Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Biomedicines ; 12(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255235

RESUMO

BACKGROUND: Loss of substantia nigra dopaminergic cells and alpha-synuclein (α-syn)-rich intraneuronal deposits within the central nervous system are key hallmarks of Parkinson's disease (PD). Levodopa (L-DOPA) is the current gold-standard treatment for PD. This study aimed to evaluate in vivo retinal changes in a transgenic PD model of α-syn overexpression and the effect of acute levodopa (L-DOPA) treatment. METHODS: Anaesthetised 6-month-old mice expressing human A53T alpha-synuclein (HOM) and wildtype (WT) control littermates were intraperitoneally given 20 mg/kg L-DOPA (50 mg levodopa, 2.5 mg benserazide) or vehicle saline (n = 11-18 per group). In vivo retinal function (dark-adapted full-field ERG) and structure (optical coherence tomography, OCT) were recorded before and after drug treatment for 30 min. Ex vivo immunohistochemistry (IHC) on flat-mounted retina was conducted to assess tyrosine hydroxylase (TH) positive cell counts (n = 7-8 per group). RESULTS: We found that photoreceptor (a-wave) and bipolar cell (b-wave) ERG responses (p < 0.01) in A53T HOM mice treated with L-DOPA grew in amplitude more (47 ± 9%) than WT mice (16 ± 9%) treated with L-DOPA, which was similar to the vehicle group (A53T HOM 25 ± 9%; WT 19 ± 7%). While outer retinal thinning (outer nuclear layer, ONL, and outer plexiform layer, OPL) was confirmed in A53T HOM mice (p < 0.01), L-DOPA did not have an ameliorative effect on retinal layer thickness. These findings were observed in the absence of changes to the number of TH-positive amacrine cells across experiment groups. Acute L-DOPA treatment transiently improves visual dysfunction caused by abnormal alpha-synuclein accumulation. CONCLUSIONS: These findings deepen our understanding of dopamine and alpha-synuclein interactions in the retina and provide a high-throughput preclinical framework, primed for translation, through which novel therapeutic compounds can be objectively screened and assessed for fast-tracking PD drug discovery.

2.
J Parkinsons Dis ; 14(1): 167-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189711

RESUMO

BACKGROUND: Visual biomarkers of Parkinson's disease (PD) are attractive as the retina is an outpouching of the brain. Although inner retinal neurodegeneration in PD is well-established this has overlap with other neurodegenerative diseases and thus outer retinal (photoreceptor) measures warrant further investigation. OBJECTIVE: To examine in a cross-sectional study whether clinically implementable measures targeting outer retinal function and structure can differentiate PD from healthy ageing and whether these are sensitive to intraday levodopa (L-DOPA) dosing. METHODS: Centre-surround perceptual contrast suppression, macular visual field sensitivity, colour discrimination, light-adapted electroretinography and optical coherence tomography (OCT) were tested in PD participants (n = 16) and controls (n = 21). Electroretinography and OCT were conducted before and after midday L-DOPA in PD participants, or repeated after ∼2 hours in controls. RESULTS: PD participants had decreased center-surround contrast suppression (p < 0.01), reduced macular visual field sensitivity (p < 0.05), color vision impairment (p < 0.01) photoreceptor dysfunction (a-wave, p < 0.01) and photoreceptor neurodegeneration (outer nuclear layer thinning, p < 0.05), relative to controls. Effect size comparison between inner and outer retinal parameters showed that photoreceptor metrics were similarly robust in differentiating the PD group from age-matched controls as inner retinal changes. Electroretinography and OCT were unaffected by L-DOPA treatment or time. CONCLUSIONS: We show that outer retinal outcomes of photoreceptoral dysfunction (decreased cone function and impaired color vision) and degeneration (i.e., outer nuclear layer thinning) were equivalent to inner retinal metrics at differentiating PD from healthy age-matched adults. These findings suggest outer retinal metrics may serve as useful biomarkers for PD.


Assuntos
Doença de Parkinson , Adulto , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Levodopa/farmacologia , Levodopa/uso terapêutico , Estudos Transversais , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Percepção Visual , Biomarcadores , Eletrofisiologia
3.
Clin Exp Optom ; 107(2): 147-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980904

RESUMO

Glaucoma is a leading cause of blindness worldwide, with a marked increase in prevalence with advancing age. Due to the multifactorial nature of glaucoma pathogenesis, dissecting how ageing impacts upon glaucoma risk requires analysis and synthesis of evidence from a vast literature. While there is a wealth of human clinical studies examining glaucoma pathogenesis and why older patients have increased risk, many aspects of the disease such as adaptations of retinal ganglion cells to stress, autophagy and the role of glial cells in glaucoma, require the use of animal models to study the complex cellular processes and interactions. Additionally, the accelerated nature of ageing in rodents facilitates the longitudinal study of changes that would not be feasible in human clinical studies. This review article examines evidence derived predominantly from rodent models on how the ageing process impacts upon various aspects of glaucoma pathology from the retinal ganglion cells themselves, to supporting cells and tissues such as glial cells, connective tissue and vasculature, in addition to oxidative stress and autophagy. An improved understanding of how ageing modifies these factors may lead to the development of different therapeutic strategies that target specific risk factors or processes involved in glaucoma.


Assuntos
Glaucoma , Animais , Humanos , Estudos Longitudinais , Glaucoma/etiologia , Glaucoma/patologia , Células Ganglionares da Retina/patologia , Envelhecimento , Cegueira , Modelos Animais de Doenças , Pressão Intraocular
4.
Artigo em Inglês | MEDLINE | ID: mdl-38082944

RESUMO

The relationship between externally applied force and intraocular pressure was determined using an ex-vivo porcine eye model (N=9). Eyes were indented through the sclera with a convex ophthalmodynamometry head (ODM). Intraocular pressure and ophthalmodynamometric force were simultaneously recorded to establish a calibration curve of this indenter head. A calibration coefficient of 0.140 ± 0.009 mmHg/mN was established and was shown to be highly linear (r = 0.998 ± 0.002). Repeat application of ODM resulted in a 0.010 ± 0.002 mmHg/mN increase to the calibration coefficient.Clinical Relevance- ODM has been highlighted as a potential method of non-invasively estimating intracranial pressure. This study provides relevant data for the practical performance of ODM with similar compressive devices.


Assuntos
Pressão Intraocular , Oftalmodinamometria , Animais , Suínos , Oftalmodinamometria/métodos , Calibragem , Pressão Intracraniana , Esclera
5.
Neurobiol Aging ; 131: 74-87, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586253

RESUMO

This study quantified age-related changes to retinal autophagy using the CAG-RFP-EGFP-LC3 autophagy reporter mice and considered how aging impacts autophagic responses to acute intraocular pressure (IOP) stress. IOP was elevated to 50 mm Hg for 30 minutes in 3-month-old and 12-month-old CAG-RFP-EGFP-LC3 (n = 7 per age group) and Thy1-YFPh transgenic mice (n = 3 per age group). Compared with younger eyes, older eyes showed diminished basal autophagy in the outer retina, while the inner retina was unaffected. Autophagic flux (red:yellow puncta ratio) was elevated in the inner plexiform layer. Three days following IOP elevation, older eyes showed poorer functional recovery, most notably in ganglion cell responses compared to younger eyes (12 months old: -33.4 ±â€¯5.3% vs. 3 months mice: -13.4 ±â€¯4.5%). This paralleled a reduced capacity to upregulate autophagic puncta volume in the inner retina in older eyes, a response that was seen in younger eyes. Age-related decline in basal and stress-induced autophagy in the retina is associated with greater retinal ganglion cells' susceptibility to IOP elevation.


Assuntos
Pressão Intraocular , Retina , Camundongos , Animais , Células Ganglionares da Retina/fisiologia , Modelos Animais de Doenças , Camundongos Transgênicos , Autofagia/genética
6.
Methods Mol Biol ; 2708: 131-140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558967

RESUMO

Electroretinography allows for noninvasive functional assessment of the retina and is a mainstay for preclinical studies of retinal function in health and disease. The full-field electroretinogram is useful for a variety of applications as it returns a functional readout from each of the major cell classes within the retina: photoreceptors, bipolar cells, amacrine cells, and retinal ganglion cells. Rodent models are commonly employed in ocular degeneration studies due to the fast throughput of these mammalian species and the conservation of the electroretinogram from the preclinic to the clinic. Here we describe approaches for in vivo electroretinography in rodent models.


Assuntos
Eletrorretinografia , Roedores , Animais , Retina , Células Ganglionares da Retina , Células Amácrinas
7.
Drug Discov Today ; 28(9): 103718, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37467881

RESUMO

Vision loss causes a significant burden on individuals and communities on a financial, emotional and social level. Common causes include age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma and retinitis pigmentosa (RP; also known as 'rod-cone dystrophy'). As the population continues to grow and age globally, an increasing number of people will experience vision loss. Hence, there is an urgent need to develop therapies that can curb early pathological events. The broccoli-derived compound, sulforaphane (SFN), is reported to have multiple health benefits and modes of action. In this review, we outline the preclinical findings on SFN in ocular diseases and discuss the future clinical testing of this compound.


Assuntos
Brassica , Degeneração Macular , Retinose Pigmentar , Humanos , Retinose Pigmentar/terapia , Degeneração Macular/tratamento farmacológico , Isotiocianatos/uso terapêutico , Transtornos da Visão
8.
Methods Mol Biol ; 2678: 37-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326704

RESUMO

Electroretinography and optical coherence tomography imaging allow for non-invasive quantitative assessment of the retina. These approaches have become mainstays for identifying the very earliest impact of hyperglycemia on retinal function and structure in animal models of diabetic eye disease. Moreover, they are essential for assessing the safety and efficacy of novel treatment approaches for diabetic retinopathy. Here, we describe approaches for in vivo electroretinography and optical coherence tomography imaging in rodent models of diabetes.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Eletrorretinografia , Tomografia de Coerência Óptica/métodos , Roedores , Retina/diagnóstico por imagem , Retinopatia Diabética/diagnóstico por imagem
9.
Front Neurosci ; 17: 1146979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214398

RESUMO

Abnormal alpha-synuclein (α-SYN) protein deposition has long been recognized as one of the pathological hallmarks of Parkinson's disease's (PD). This study considers the potential utility of PD retinal biomarkers by investigating retinal changes in a well characterized PD model of α-SYN overexpression and how these correspond to the presence of retinal α-SYN. Transgenic A53T homozygous (HOM) mice overexpressing human α-SYN and wildtype (WT) control littermates were assessed at 4, 6, and 14 months of age (male and female, n = 15-29 per group). In vivo retinal function (electroretinography, ERG) and structure (optical coherence tomography, OCT) were recorded, and retinal immunohistochemistry and western blot assays were performed to examine retinal α-SYN and tyrosine hydroxylase. Compared to WT controls, A53T mice exhibited reduced light-adapted (cone photoreceptor and bipolar cell amplitude, p < 0.0001) ERG responses and outer retinal thinning (outer plexiform layer, outer nuclear layer, p < 0.0001) which correlated with elevated levels of α-SYN. These retinal signatures provide a high throughput means to study α-SYN induced neurodegeneration and may be useful in vivo endpoints for PD drug discovery.

10.
J Neurosci ; 43(12): 2199-2209, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813574

RESUMO

Pathogenic variants in HCN1 are associated with a range of epilepsy syndromes including a developmental and epileptic encephalopathy. The recurrent de novo HCN1 pathogenic variant (M305L) results in a cation leak, allowing the flux of excitatory ions at potentials where the wild-type channels are closed. The Hcn1M294L mouse recapitulates patient seizure and behavioral phenotypes. As HCN1 channels are highly expressed in rod and cone photoreceptor inner segments, where they shape the light response, mutated channels are likely to impact visual function. Electroretinogram (ERG) recordings from male and female mice Hcn1M294L mice revealed a significant decrease in the photoreceptor sensitivity to light, as well as attenuated bipolar cell (P2) and retinal ganglion cell responses. Hcn1M294L mice also showed attenuated ERG responses to flickering lights. ERG abnormalities are consistent with the response recorded from a single female human subject. There was no impact of the variant on the structure or expression of the Hcn1 protein in the retina. In silico modeling of photoreceptors revealed that the mutated HCN1 channel dramatically reduced light-induced hyperpolarization, resulting in more Ca2+ flux during the response when compared with the wild-type situation. We propose that the light-induced change in glutamate release from photoreceptors during a stimulus will be diminished, significantly blunting the dynamic range of this response. Our data highlight the importance of HCN1 channels to retinal function and suggest that patients with HCN1 pathogenic variants are likely to have a dramatically reduced sensitivity to light and a limited ability to process temporal information.SIGNIFICANCE STATEMENT Pathogenic variants in HCN1 are emerging as an important cause of catastrophic epilepsy. HCN1 channels are ubiquitously expressed throughout the body, including the retina. Electroretinogram recordings from a mouse model of HCN1 genetic epilepsy showed a marked decrease in the photoreceptor sensitivity to light and a reduced ability to respond to high rates of light flicker. No morphologic deficits were noted. Simulation data suggest that the mutated HCN1 channel blunts light-induced hyperpolarization and consequently limits the dynamic range of this response. Our results provide insights into the role HCN1 channels play in retinal function as well as highlighting the need to consider retinal dysfunction in disease caused by HCN1 variants. The characteristic changes in the electroretinogram open the possibility of using this tool as a biomarker for this HCN1 epilepsy variant and to facilitate development of treatments.


Assuntos
Epilepsia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Humanos , Masculino , Feminino , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Retina/metabolismo , Eletrorretinografia , Epilepsia/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Canais de Potássio/fisiologia
11.
Pharmacol Res ; 187: 106617, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535572

RESUMO

Retinal neovascularization, or pathological angiogenesis in the retina, is a leading cause of blindness in developed countries. Transforming growth factor-ß-activated kinase 1 (TAK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) activated by TGF-ß1 and other proinflammatory cytokines. TAK1 is also a key mediator of proinflammatory signals and plays an important role in maintaining vascular integrity upon proinflammatory cytokine stimulation such as TNFα. However, its role in pathological angiogenesis, particularly in retinal neovascularization, remains unclear. Here, we investigate the regulatory role of TAK1 in human endothelial cells responding to inflammatory stimuli and in a rat model of oxygen-induced retinopathy (OIR) featured retinal neovascularization. Using TAK1 knockout human endothelial cells that subjected to inflammatory stimuli, transcriptome analysis revealed that TAK1 is required for activation of NFκB signaling and mediates its downstream gene expression related to endothelial activation and angiogenesis. Moreover, pharmacological inhibition of TAK1 by 5Z-7-oxozeaenol attenuated angiogenic activities of endothelial cells. Transcriptome analysis also revealed enrichment of TAK1-mediated NFκB signaling pathway in the retina of OIR rats and retinal neovascular membrane from patients with proliferative diabetic retinopathy. Intravitreal injection of 5Z-7-oxozeaenol significantly reduced hypoxia-induced inflammation and microglial activation, thus attenuating aberrant retinal angiogenesis in OIR rats. Our data suggest that inhibition of TAK1 may have therapeutic potential for the treatment of retinal neovascular pathologies.


Assuntos
Doenças Retinianas , Neovascularização Retiniana , Animais , Humanos , Camundongos , Ratos , Citocinas/uso terapêutico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Lactonas/uso terapêutico , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , NF-kappa B , Oxigênio , Doenças Retinianas/patologia , Neovascularização Retiniana/metabolismo
12.
Clin Exp Optom ; 106(5): 523-531, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483117

RESUMO

CLINICAL RELEVANCE: The use of chloroquine or hydroxychloroquine can lead to both acute and chronic changes to both retinal structure and function. BACKGROUND: Chloroquine (CQ) and hydroxychloroquine (HCQ) have the potential for retina toxicity. The acute impact of short-term drug exposure (2-4 weeks) on in vivo retinal structure and function and assess whether short wavelength light exposure further exacerbates any structural and functional changes was assessed in a murine model. METHODS: Adult C57BL/6 J mice received intraperitoneal injection of vehicle or hydroxychloroquine (10 mg/kg) 3 times per week for 2 or 4 weeks, or chloroquine for 4 weeks (10 mg/kg). Over this period, animals were exposed to room light (8 hours) or short-wavelength light 4 hours per day (4 hours of normal room light) for 5 days each week. Retinal changes were assessed using electroretinography (ERG), in vivo optical coherence tomography (OCT) imaging. RESULTS: Short-term low-dose HCQ and CQ treatment led to RPE thickening and elongation of photoreceptors. These structural changes were associated with a no dysfunction in the case of HCQ treatments and widespread functional changes (photoreceptor sensitivity, bipolar cell amplitude and oscillatory potential amplitude) in the case of CQ treatment. Exposure to low intensity short-wavelength light does not appear to alter the effect of HCQ or CQ. CONCLUSIONS: HCQ and CQ treatment has acute effects on both retinal structure and function, effects that were not exacerbated by short wavelength light exposure. Whether chronic short wavelength light exposure exacerbates these changes require further study.


Assuntos
Cloroquina , Hidroxicloroquina , Animais , Camundongos , Cloroquina/uso terapêutico , Cloroquina/toxicidade , Eletrorretinografia , Hidroxicloroquina/uso terapêutico , Hidroxicloroquina/toxicidade , Camundongos Endogâmicos C57BL , Retina
13.
Ophthalmol Sci ; 2(4): 100179, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36531586

RESUMO

Purpose: Rhegmatogenous retinal detachment repair by intraoperative sealing of the tear without a tamponade agent should enable faster restoration of vision and resumption of normal activities. It avoids the need for further surgery in the case of silicone oil endotamponade. This study evaluated the retinal thermofusion (RTF) retinopexy method of subretinal space dehydration before photocoagulation to create an instantaneous intraoperative retina reattachment in a preclinical model. Design: Preclinical study. Participants: Twenty Dutch Belt, pigmented rabbits that underwent RTF repair after experimental retinal detachment. Methods: This ex vivo model quantified adhesion force between the retina and underlying retinal pigment epithelium and choroid after treatment of 1 retinal edge using postmortem porcine or human retina (6 × 12 mm). We compared (1) control, (2) laser photocoagulation alone, (3) dehydration alone, and (4) dehydration followed by photocoagulation (RTF). Optimized parameters for RTF were then applied in the in vivo rabbit model of retinal detachment. Animals were followed up for 14 days. Main Outcome Measures: For this ex vivo model, we measured adhesion force and related this to tissue temperature. For the in vivo study, we assessed retinal attachment using funduscopy and histologic analysis. Results: The ex vivo model showed that RTF repair produced significantly higher adhesion force than photocoagulation alone independent of dehydration method: warm (60° C) high airflow (50-70 ml/minute) or using laser wavelengths targeting water absorption peaks (1470 or 1940 nm) with coaxial low airflow (10-20 ml/minute). The latter approach produced a smaller footprint of dehydration. Application of RTF (1940-nm laser with coaxial airflow) in an in vivo retinal detachment model in rabbit eyes resulted in immediate retinal adhesion, achieving forces similar to those in the ex vivo experiments. Retinal thermofusion repair resulted in stable reattachment of the retina over the 2-week follow-up period. Conclusions: We showed that a short preliminary dehydrating laser treatment of a retinal tear margin before traditional laser photocoagulation creates an immediate intraoperative waterproof retinopexy adhesion independent of tamponade and a wound-healing response. This approach potentially will allow rapid postoperative recovery regardless of the tear location and improved vision.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36232222

RESUMO

Evidence suggests that prolonged blue-light exposure can impact vision; however, less is known about its impact on non-visual higher-order functions in the brain, such as learning and memory. Blue-light-blocking lenses (BBLs) claim to reduce these potential impacts. Hence, we assessed structural and functional hippocampal alterations following blue-light exposure and the protective efficacy of BBLs. Male Wistar rats were divided into (n = 6 in each group) normal control (NC), blue-light exposure (LE), and blue-light with BBLs (Crizal Prevencia, CP and DuraVision Blue, DB) groups. After 28 days of light exposure (12:12 light: dark cycle), rats were trained for the Morris water maze memory retention test, and brain tissues were sectioned for hippocampal neuronal analysis using Golgi and Cresyl violet stains. The memory retention test was significantly delayed (p < 0.05) in LE compared with DB groups on day 1 of training. Comparison of Golgi-stained neurons showed significant structural alterations, particularly in the basal dendrites of hippocampal neurons in the LE group, with BBLs significantly mitigating these structural changes (p < 0.05). Comparison of Cresyl-violet-stained neurons revealed significantly (p < 0.001) increased degenerated hippocampal neurons in LE rats, with fewer degenerated neurons in the CP lens group for CA1 neurons (p < 0.05), and for both CP and DB groups (p < 0.05) for CA3 neurons. Thus, in addition to documented effects on visual centers, high-level blue-light exposure also results in degeneration in hippocampal neurons with associated behavioral deficits. These changes can be partially ameliorated with blue-light-blocking lenses.


Assuntos
Hipocampo , Roedores , Animais , Dendritos , Masculino , Neurônios , Ratos , Ratos Wistar
15.
Front Aging Neurosci ; 14: 859265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645783

RESUMO

Aging and elevated intraocular pressure (IOP) are two major risk factors for glaucomatous optic neuropathy; a condition characterized by the selective, progressive injury, and subsequent loss of retinal ganglion cells (RGCs). We examined how age modified the capacity for RGCs to functionally recover following a reproducible IOP elevation (50 mmHg for 30 min). We found that RGC functional recovery (measured using electroretinography) was complete by 7 days in 3-month-old mice but was delayed in 12-month-old mice until 14 days. At the 7-day recovery endpoint when RGC function had recovered in young but not older eyes, we examined RGC structural responses to IOP-related stress by analyzing RGC dendritic morphology. ON-RGC cell volume was attenuated following IOP elevation in both young and older mice. We also found that following IOP elevation OFF-RGC dendritic morphology became less complex per cell volume in young mice, an effect that was not observed in older eyes. Our data suggest that adaptations in OFF-RGCs in young eyes were associated with better functional recovery 7 days after IOP elevation. Loss of RGC cellular adaptations may account for delayed functional recovery in older eyes.

16.
Sci Rep ; 12(1): 7610, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534594

RESUMO

In addition to well characterized motor symptoms, visual disturbances are increasingly recognized as an early manifestation in Parkinson's disease (PD). A better understanding of the mechanisms underlying these changes would facilitate the development of vision tests which can be used as preclinical biomarkers to support the development of novel therapeutics for PD. This study aims to characterize the retinal phenotype of a mouse model of dopaminergic dysfunction and to examine whether these changes are reversible with levodopa treatment. We use a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD to characterize the neurotoxic effects of MPTP on in vivo retinal function (electroretinography, ERG), retinal structure (optical coherence tomography, OCT) and retinal dopaminergic cell number (tyrosine hydroxylase immunohistochemistry, IHC) at two time points (21 and 45 days) post MPTP model induction. We also investigate the effect of levodopa (L-DOPA) as a proof-of-principle chronic intervention against MPTP-induced changes in the retina. We show that MPTP decreases dopaminergic amacrine cell number (9%, p < 0.05) and that a component of the ERG that involves these cells, in particular oscillatory potential (OP) peak timing, was significantly delayed at Day 45 (7-13%, p < 0.01). This functional deficit was paralleled by outer plexiform layer (OPL) thinning (p < 0.05). L-DOPA treatment ameliorated oscillatory potential deficits (7-13%, p < 0.001) in MPTP animals. Our data suggest that the MPTP toxin slows the timing of inner retinal feedback circuits related to retinal dopaminergic pathways which mirrors findings from humans with PD. It also indicates that the MPTP model causes structural thinning of the outer retinal layer on OCT imaging that is not ameliorated with L-DOPA treatment. Together, these non-invasive measures serve as effective biomarkers for PD diagnosis as well as for quantifying the effect of therapy.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Levodopa/farmacologia , Levodopa/uso terapêutico , Intoxicação por MPTP/complicações , Intoxicação por MPTP/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Brain Struct Funct ; 227(6): 2035-2048, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441271

RESUMO

Myelination within the central nervous system (CNS) is crucial for the conduction of action potentials by neurons. Variation in compact myelin morphology and the structure of the paranode are hypothesised to have significant impact on the speed of action potentials. There are, however, limited experimental data investigating the impact of changes in myelin structure upon conductivity in the central nervous system. We have used a genetic model in which myelin thickness is reduced to investigate the effect of myelin alterations upon action potential velocity. A detailed examination of the myelin ultrastructure of mice in which the receptor tyrosine kinase Tyro3 has been deleted showed that, in addition to thinner myelin, these mice have significantly disrupted paranodes. Despite these alterations to myelin and paranodal structure, we did not identify a reduction in conductivity in either the corpus callosum or the optic nerve. Exploration of these results using a mathematical model of neuronal conductivity predicts that the absence of Tyro3 would lead to reduced conductivity in single fibres, but would not affect the compound action potential of multiple myelinated neurons as seen in neuronal tracts. Our data highlight the importance of experimental assessment of conductivity and suggests that simple assessment of structural changes to myelin is a poor predictor of neural functional outcomes.


Assuntos
Bainha de Mielina , Substância Branca , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Camundongos , Bainha de Mielina/ultraestrutura , Nervo Óptico/fisiologia
18.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903661

RESUMO

Local blood flow control within the central nervous system (CNS) is critical to proper function and is dependent on coordination between neurons, glia, and blood vessels. Macroglia, such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation, and highlights changes during early diabetes. Structurally, microglia were found to contact retinal capillaries and neuronal synapses. In the brain and retinal explants, the addition of fractalkine, the sole ligand for monocyte receptor Cx3cr1, resulted in capillary constriction at regions of microglial contact. This vascular regulation was dependent on microglial Cx3cr1 involvement, since genetic and pharmacological inhibition of Cx3cr1 abolished fractalkine-induced constriction. Analysis of the microglial transcriptome identified several vasoactive genes, including angiotensinogen, a constituent of the renin-angiotensin system (RAS). Subsequent functional analysis showed that RAS blockade via candesartan abolished microglial-induced capillary constriction. Microglial regulation was explored in a rat streptozotocin (STZ) model of diabetic retinopathy. Retinal blood flow was reduced after 4 wk due to reduced capillary diameter and this was coincident with increased microglial association. Functional assessment showed loss of microglial-capillary response in STZ-treated animals and transcriptome analysis showed evidence of RAS pathway dysregulation in microglia. While candesartan treatment reversed capillary constriction in STZ-treated animals, blood flow remained decreased likely due to dilation of larger vessels. This work shows microglia actively participate in the neurovascular unit, with aberrant microglial-vascular function possibly contributing to the early vascular compromise during diabetic retinopathy.


Assuntos
Quimiocina CX3CL1/metabolismo , Retinopatia Diabética/patologia , Microglia/fisiologia , Retina/patologia , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Quimiocina CX3CL1/farmacologia , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/metabolismo , Perfilação da Expressão Gênica , Camundongos , Microglia/metabolismo , Neurônios/fisiologia , Pericitos/patologia , Ratos , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/genética , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/farmacologia , Tetrazóis/farmacologia , Vasoconstrição/efeitos dos fármacos
19.
Neurobiol Aging ; 108: 58-71, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509856

RESUMO

Executive function deficits in Alzheimer's disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APPSwe/PS1∆E9 (APP/PS1) mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Função Executiva , Testes Neuropsicológicos , Tato/fisiologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Presenilina-1/genética , Recompensa , Percepção Visual/fisiologia
20.
Alzheimers Dement (Amst) ; 13(1): e12193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977118

RESUMO

INTRODUCTION: Abnormal retinal changes are increasingly recognized as an early pathological change in Alzheimer's disease (AD). Although amyloid beta oligomers (Aßo) have been shown to accumulate in the blood and retina of AD patients and animals, it is not known whether the early Aßo deposition precedes their accumulation in brain. METHODS AND RESULTS: Using nanobodies targeting Aß1-40 and Aß1-42 oligomers we were able to detect Aß oligomers in the retina and blood but not in the brain of 3-month-old APP/PS1 mice. Furthermore, Aß plaques were detected in the brain but not the retina of 3-month-old APP/PS1 mice. CONCLUSION: These results suggest that retinal accumulation of Aßo originates from peripheral blood and precedes cognitive decline and Aßo deposition in the brain. This provides a very strong basis to develop and implement an "eye test" for early detection of AD using nanobodies targeting retinal Aß.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA